2022-10-27
近日,大连化物所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员、郑双好副研究员团队,设计了三维多孔导电亲锂的Ti3C2Tx MXene骨架用于高容量、无枝晶金属锂负极,匹配三维多孔导电、超高载量磷酸铁锂正极,研制出高能量密度、长寿命锂金属电池。 锂金属电池因金属锂负极具有高理论比容量(3860 mAh/g)和低氧化还原电压(-3.04V vs. SHE)而被认为是下一代高能量电池。然而,由于其存在不可控的锂枝晶、死锂,以及充放电过程锂金属体积膨胀等问题,导致锂金属循环性能差,安全性能低,限制了锂金属负极在高比能锂金属电池中的实际应用。此外,传统的刮涂法制备出的正极活性物质载量有限(20mg/cm2),面积容量往往低于4mAh/cm2,使得锂金属电池的面积能量密度较低。因此,如何同时获得稳定的无枝晶锂负极和匹配的高载量正极,以实现长寿命和高能量密度的锂金属电池,仍面临挑战。 本工作中,该团队研制了3D打印Ti3C2Tx MXene框架沉积的锂金属负极与超厚磷酸铁锂框架正极,构筑出高面积能量密度、长寿命锂金属电池。研究发现,MXene导电骨架的亲锂特性能够调节局部电流分布,均匀化锂成核与沉积,形成均匀的富LiF固体电解质界面层和稳定的锂/电解质界面,实现了高容量(30mAh/cm2)、高稳定(>4800h循环)且无枝晶的锂金属负极。3D打印磷酸铁锂电极(载量171mg/cm2)具有三维多孔导电框架结构,促进了电子传输动力学速率,降低了厚电极中的离子传输距离,提高了活性材料的利用率,从而有效地提高了锂金属电池的电化学性能。所匹配的锂金属全电池(锂负极过量50%)表现出25.3mAh/cm2的高面容量和81.6mWh/cm2的高面能量密度,远高于目前文献中报道值。本工作通过3D打印同时解决了锂金属负极不稳定和正极面容量较低的问题,为研制长寿命、高比能锂金属电池提供了一条可行的途径。 在构筑可打印电化学储能器件工作中,该团队此前曾开发出多种打印技术,如喷涂打印微型超级电容器(Adv. Mater.,2017;ACS Nano,2017),丝网印刷微型超级电容器、锂离子/锌锰微型电池(Energy Environ. Sci.,2019;Natl. Sci. Rev.,2020;Adv. Mater.,2021;Small,2021),喷墨打印微型超级电容器与自供电温度传感集成系统(Adv. Energy Mater.,2021),3D打印钠离子微型电池与微型/杂化超级电容器(J. Energy Chem.,2021;Adv. Energy Mater.,2022;Adv. Mater.,2022)等。 相关研究成果以“All 3D printing lithium metal batteries with hierarchically and conductively porous skeleton for ultrahigh areal energy density”为题,于近日发表在《能源存储材料》(Energy Storage Materials)上。该工作的第一作者是我所508组博士研究生马佳鑫。上述工作得到国家自然科学基金、中科院A类先导专项“变革性洁净能源关键技术与示范”、中科院洁净能源创新研究院合作基金等项目的资助。(文/图 马佳鑫、郑双好) 文章链接:https://doi.org/10.1016/j.ensm.2022.10.036关闭窗口